Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Cell Mol Immunol ; 20(7): 835-849, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-20235826

ABSTRACT

Early and strong interferon type I (IFN-I) responses are usually associated with mild COVID-19 disease, whereas persistent or unregulated proinflammatory cytokine responses are associated with severe disease outcomes. Previous work suggested that monocyte-derived macrophages (MDMs) are resistant and unresponsive to SARS-CoV-2 infection. Here, we demonstrate that upon phagocytosis of SARS-CoV-2-infected cells, MDMs are activated and secrete IL-6 and TNF. Importantly, activated MDMs in turn mediate strong activation of plasmacytoid dendritic cells (pDCs), leading to the secretion of high levels of IFN-α and TNF. Furthermore, pDC activation promoted IL-6 production by MDMs. This kind of pDC activation was dependent on direct integrin-mediated cell‒cell contacts and involved stimulation of the TLR7 and STING signaling pathways. Overall, the present study describes a novel and potent pathway of pDC activation that is linked to the macrophage-mediated clearance of infected cells. These findings suggest that a high infection rate by SARS-CoV-2 may lead to exaggerated cytokine responses, which may contribute to tissue damage and severe disease.


Subject(s)
COVID-19 , Interferon Type I , Humans , SARS-CoV-2/metabolism , Interleukin-6/metabolism , COVID-19/metabolism , Interferon-alpha/metabolism , Macrophages/metabolism , Cytokines/metabolism , Phagocytosis , Interferon Type I/metabolism , Dendritic Cells/metabolism
2.
Inflamm Res ; 71(12): 1417-1432, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2074066

ABSTRACT

Acute respiratory distress syndrome (ARDS) is an acute and diffuse inflammatory lung injury in a short time, one of the common severe manifestations of the respiratory system that endangers human life and health. As an innate immune cell, macrophages play a key role in the inflammatory response. For a long time, the role of pulmonary macrophages in ARDS has tended to revolve around the polarization of M1/M2. However, with the development of single-cell RNA sequencing, fate mapping, metabolomics, and other new technologies, a deeper understanding of the development process, classification, and function of macrophages in the lung are acquired. Here, we discuss the function of pulmonary macrophages in ARDS from the two dimensions of anatomical location and cell origin and describe the effects of cell metabolism and intercellular interaction on the function of macrophages. Besides, we explore the treatments for targeting macrophages, such as enhancing macrophage phagocytosis, regulating macrophage recruitment, and macrophage death. Considering the differences in responsiveness of different research groups to these treatments and the tremendous dynamic changes in the gene expression of monocyte/macrophage, we discussed the possibility of characterizing the gene expression of monocyte/macrophage as the biomarkers. We hope that this review will provide new insight into pulmonary macrophage function and therapeutic targets of ARDS.


Subject(s)
Acute Lung Injury , Respiratory Distress Syndrome , Humans , Macrophages, Alveolar/metabolism , Macrophages , Lung/metabolism
3.
AIDS Res Hum Retroviruses ; 38(5): 401-405, 2022 05.
Article in English | MEDLINE | ID: covidwho-1840021

ABSTRACT

S100A8 and S100A9 are members of the Alarmin family; these proteins are abundantly expressed in neutrophils, form a heterodimer complex, and are secreted in plasma on pathogen infection or acute inflammatory diseases. Recently, both proteins were identified as novel biomarkers of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and were shown to play key roles in inducing an aggressive inflammatory response by mediating the release of large amounts of pro-inflammatory cytokines, called the "cytokine storm." Although co-infection with SARS-CoV-2 in people living with HIV-1 may result in an immunocompromised status, the role of the S100A8/A9 complex in HIV-1 replication in primary T cells and macrophages is still unclear. Here, we evaluated the roles of the proteins in HIV replication to elucidate their functions. We found that the complex had no impact on virus replication in both cell types; however, the subunits of S100A8 and S100A9 inhibit HIV in macrophages. These findings provide important insights into the regulation of HIV viral loads during SARS-CoV-2 co-infection.


Subject(s)
COVID-19 , Coinfection , HIV Infections , Biomarkers/metabolism , Calgranulin A/metabolism , Calgranulin B , HIV Infections/metabolism , Humans , Macrophages , SARS-CoV-2 , Virus Replication
4.
Int J Mol Sci ; 22(13)2021 Jul 05.
Article in English | MEDLINE | ID: covidwho-1304673

ABSTRACT

Macrophages (Mφs) are instrumental regulators of the immune response whereby they acquire diverse functional phenotypes following their exposure to microenvironmental cues that govern their differentiation from monocytes and their activation. The complexity and diversity of the mycobacterial cell wall have empowered mycobacteria with potent immunomodulatory capacities. A heat-killed (HK) whole-cell preparation of Mycobacterium obuense (M. obuense) has shown promise as an adjunctive immunotherapeutic agent for the treatment of cancer. Moreover, HK M. obuense has been shown to trigger the differentiation of human monocytes into a monocyte-derived macrophage (MDM) type named Mob-MDM. However, the transcriptomic profile and functional properties of Mob-MDMs remain undefined during an activation state. Here, we characterized cytokine/chemokine release patterns and transcriptomic profiles of lipopolysaccharide (LPS)/interferon γ (IFNγ)-activated human MDMs that were differentiated with HK M. obuense (Mob-MDM(LPS/IFNγ)), macrophage colony-stimulating factor M-MDM(LPS/IFNγ)), or granulocyte/macrophage colony-stimulating factor (GM-MDM(LPS/IFNγ)). Mob-MDM(LPS/IFNγ) demonstrated a unique cytokine/chemokine release pattern (interleukin (IL)-10low, IL-12/23p40low, IL-23p19/p40low, chemokine (C-x-C) motif ligand (CXCL)9low) that was distinct from those of M-MDM(LPS/IFNγ) and GM-MDM(LPS/IFNγ). Furthermore, M-MDM(LPS/IFNγ) maintained IL-10 production at significantly higher levels compared to GM-MDM(LPS/IFNγ) and Mob-MDM(LPS/IFNγ) despite being activated with M1-Mφ-activating stimuli. Comparative RNA sequencing analysis pointed to a distinct transcriptome profile for Mob-MDM(LPS/IFNγ) relative to both M-MDM(LPS/IFNγ) and GM-MDM(LPS/IFNγ) that comprised 417 transcripts. Functional gene-set enrichment analysis revealed significant overrepresentation of signaling pathways and biological processes that were uniquely related to Mob-MDM(LPS/IFNγ). Our findings lay a foundation for the potential integration of HK M. obuense in specific cell-based immunotherapeutic modalities such as adoptive transfer of Mφs (Mob-MDM(LPS/IFNγ)) for cancer treatment.


Subject(s)
Chemokines/metabolism , Cytokines/metabolism , Macrophages/immunology , Nontuberculous Mycobacteria/immunology , Cell Differentiation/genetics , Cell Differentiation/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacokinetics , Humans , Immunologic Factors/pharmacology , In Vitro Techniques , Interferon-gamma/pharmacology , Lipopolysaccharides/pharmacology , Macrophage Activation/drug effects , Macrophage Activation/immunology , Macrophage Colony-Stimulating Factor/pharmacology , Macrophages/cytology , Macrophages/metabolism , Transcriptome
5.
Front Cell Infect Microbiol ; 11: 644574, 2021.
Article in English | MEDLINE | ID: covidwho-1207695

ABSTRACT

Vaccines are essential to control the spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and to protect the vulnerable population. However, one safety concern of vaccination is the possible development of antibody-dependent enhancement (ADE) of SARS-CoV-2 infection. The potential infection of Fc receptor bearing cells such as macrophages, would support continued virus replication and inflammatory responses, and thereby potentially worsen the clinical outcome of COVID-19. Here we demonstrate that SARS-CoV-2 and SARS-CoV neither infect human monocyte-derived macrophages (hMDM) nor induce inflammatory cytokines in these cells, in sharp contrast to Middle East respiratory syndrome (MERS) coronavirus and the common cold human coronavirus 229E. Furthermore, serum from convalescent COVID-19 patients neither induced enhancement of SARS-CoV-2 infection nor innate immune response in hMDM. Although, hMDM expressed angiotensin-converting enzyme 2, no or very low levels of transmembrane protease serine 2 were found. These results support the view that ADE may not be involved in the immunopathological processes associated with COVID-19, however, more studies are necessary to understand the potential contribution of antibodies-virus complexes with other cells expressing FcR receptors.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Antibodies, Viral , Humans , Macrophages , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL